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Abstract—Convection heat transfer in the low Reynolds number regions from an isothermal sphere

surrounded by a porous shell is numerically evaluated. In the limit of large porous medium Peclet numbers,

the average Nusselt number based on the porous medium thermal conductivity becomes independent of

the fluid Peclet number and becomes proportional to the porous medium Peclet number raised to the

power one-third. In the limit of small fluid and porous medium Peclet numbers, the average Nusselt number
approaches that given by the limiting case of pure conduction.

INTRODUCTION

MIxeD convection heat transfer from bodies embed-
ded in a porous medium and for bodies immersed in
a free moving stream have been studied quite exten-
sively [1,2]. However, there is a small body of litera-
ture that deals with fluid flow and convective heat
transfer for porous bodies immersed in a free moving
stream. Fluid flow past a porous sphere has been
studied by Brinkman [3], Ooms et al. [4], Neale ef al.
{S], Nandakumar and Masliyah [6] and that for a
porous cylinder by Shi and Braden [7]. Convective
heat transfer in the low Reynolds number regime has
been reported by Ramilison and Gebhart [8]. No simi-
lar analysis is available for a porous sphere or other
geometries.

In this study, the convective heat transfer in creep-
ing flow will be examined for the case of an isolated
composite sphere. Such a sphere comprises of a solid
impermeable isothermal core surrounded by a shell
of homogeneous and isotropic porous medium. The
porous shell can represent either a medium having a
low thermal conductivity that acts as an insulator or
a medium having a high thermal conductivity which
has the potential of enhancing heat transfer. The
effects of the porous shell permeability, its thickness
and its thermal conductivity will be studied. It should
be recognized, that at low Reynolds numbers, natural
convection is normally not insignificant especially for
low Peclet numbers. In this study, the natural con-
vection will be neglected and consequently this study
deals with pure forced convection only. The limiting
cases of low and high Peclet numbers for forced con-
vection flow will be presented.

FORMULATION

The physical problem under study is shown in Fig.
1. The isolated composite sphere has an outer radius
band an inner solid isothermal spherical core of radius

HMT 30:7-N

a. The inner core is surrounded by a shell of homo-
geneous and isotropic porous material of permeability
K. The case of axisymmetric creeping flow of a New-
tonian fluid having constant physical properties will
be considered. The viscous dissipation, pressure,
energy and buoyancy terms are neglected.

Within the unobstructed fluid outside the com-
posite sphere, the Stokes and continuity equations
describe the prevailing flow field and they are given
by

wuVe=Vp, b<r<w N

and
Vou=0, br<w 2)

where u = [u,, 4y, u,] denotes the fluid velocity vector,
and p is the fluid pressure. The corresponding equa-
tions describing the flow field within the permeable
shell region are given by Brinkman’s and continuity
equations

He
——n

K *_+_#rV2 u* = Vp*a

a<r<b 3)

and

Vour=0, a<r<b €]

where * denotes a macroscopically averaged quantity
pertaining specifically to the porous medium region.
The Brinkman equation was used in preference to the
Darcy equation in order to accommodate the bound-
ary conditions between the free fluid and the porous
medium. Full discussions on the merits of the Brink-
man equation can be found in Brinkman [3], Ooms er
al. [4] and Koplik er al. [9].

The boundary conditions for equations (1)—(4) are
those of no slip at the inner core, uniform flow at a
distance far away from the sphere and continuity of
velocities, normal and tangential stresses at the inter-
face between the free surface and the fluid, r = 5. The
solution of flow equations (1)-(4) is given by Masliyah
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inner core (sphere) radius

composite sphere outer radius

fluid specific heat

local heat transfer coefficient

fluid thermal conductivity

effective thermal conductivity of porous

medium

porous medium permeability

local Nusselt number based on &

u,, local Nusselt number based on k,,

pressure

Pe;  fluid Peclet number,

(aUqpr/ueXCppis/ k)

effective porous medium Peclet number,

(2aU oon/llr)(Cp,ﬂr/km)

r radial coordinate

T temperature

T, wall temperature

T, fluid temperature far away from the
sphere

u velocity vector

u, radial velocity

Uy angular velocity
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- i)

3

NOMENCLATURE

U,  dimensionless radial velocity, u,/U,
U, dimensionless angular velocity, u,/U,,
U, free stream approach velocity.

Greek symbols
o dimensionless solid sphere radius, a/\/ K
B dimensionless outer shell radius, 5/,/K
0 angular coordinate
e fluid viscosity
14 dimensionless radial coordinate, r/\/ K
Pr fluid density
¢ dimensionless temperature
Vi stream function.
Subscripts
f fluid
m porous medium
r radial direction
0 angular direction.
Superscripts
* pertaining to porous medium

- average quantity.

V]

L1

FiG. 1. Coordinate system for axisymmetric flow relative to
an isolated composite sphere.

I A

approaching fluid

et al. [10] in terms of stream functions as

v = _K‘sz [4/¢+BE+CE*+ DE*]sin’ 6,
Bsi<o (5
yr=— K;]"" [E/€+F€2+G<S‘%§ - sinhg)

H(Sinéhé — cosh C):lsin2 0, a<i<f (6

where

E=r/\JK, a=a/\JK and B=>5//K.

The stream functions are related to the velocities by

1 oy

%= 2sing 00 )
1 0

4 ®

Up = —5——— -
® " rZsin@ or

Similarly «* and uf are related to y*. The constants
in equations (5) and (6) are given in the appendix.

The energy equation for the free fluid and porous
medium are given by

0T uy 0T

el 2
p:C,, (u, ar + ; 69) keV?T )

and

aT*  u} oT*
N . = 2T
prC,,r<u, pe + , 60) k, V*T*,

Introducing the dimensionless quantities

(10)

é=r/\/Ks Ur=ur/Uw9 U9=u9/Uoo
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Ur = uHUs, U =ufUn, ¢= =
r v <%} é (] [=-2] va_7~00
Tw'—'Too km
and
2aU, peC,
Pepm 100 an
ki

The energy equations become

0 Vs d¢ 2011 0(,,09
U'55+?55_P6r[§’65(§ )
and

1 af. 0
+E“2‘§1“1{55§(Sln9%>] (12)
op*

Uroe 2 [1 3 (00%)
38 T F 00 T Pe, |ETE\" 0

1 o (.  o¢p*
+—‘—"—ézsin05é(51nea—é>]. (13)

The boundary conditions are

ur

r=a, &=0a ¢*=1 foralld (l4a)
r=b, E=fh, ¢=2¢* forallfd (14b)
- - og*r ., 09
r=5b, {=p, Pe 3 ——Pemaé forall 8
(14c)
roo, -0, ¢=0 forallf (14d)
_ 99 _oo* _
6=0and =« Eg—wgé——() forall &, (14e)

The velocity fields are provided from the analytical
solution. Equations (12) and (13) were numerically
solved using a control volume approach [11].

The heat transfer coefficient is given by

k, oT*

N S

(15)

r=a

Introducing dimensionless quantities equation (15)
becomes

(16)

Two types of Nusselt numbers can be defined, one
based on k. and another based on k,,, i.e.

2ah
Nuf = ”;‘C"r"
and
2ah
Ni Uy = —k—m—
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Making use of equation (16), one can obtain the local
Nusselt numbers

Pef 6¢*
Nu( = "2&5; ‘a_g ton (17)
and
ap*

Ny, = 20— . 18
Vo LT - (18)

The average Nusselt number is given by
Nu= % J Nusin 849, {19

i

In the limiting case of pure conduction, the diffusion
equations can be simultaneously solved for composite
spherical shells using the boundary conditions of
equations (14a)-(14d). The average Nusselt number
for pure conduction is then given by

— 2
Nu, = .
1+ {ko/he = 1){(o/ B)
Putting k,./k; = Pe/Pe,, equation (20a) becomes

. 2
Nt = 4 Perf Pen — 1l f)

(20a)

(20b)

where

(o/p) < L.

Here k,, refers to the spherical shell bounded by
a € & < B and &, refers to the spherical shell ¢ = 8. In
the limit of Pe; = Pe,, the average Nusselt number
becomes 2 which is the accepted Nusselt number for
a sphere in pure conduction.

NUMERICAL PROCEDURE

Initially, the convective problem was formulated
using central difference formulation. However, it was
abandoned due to convergence problems at high
transport numbers. The problem was reformulated
using the control volume approach as described by
Patankar [11]. In the porous region, the grid size was
uniform. The number of grids in the radial direction
was varied from 11 to 151 depending on the values of
o and f. The highest number of grids was used for the
case of a = 0.1, § =0.3 at Pe, > 1000. In the free
fluid zone, the grid size was varied as

(AL)isr = L1207V (AZ),

where (AL); is the grid size at the ith radial node with
i=1when ¢ = f.

The number of grids in the free fluid region was
varied to ensure that the fluid temperature at the
downstream region (# = n) decayed to zero mono-
tonically. The grid size in the angular region was
taken as n/20. Tests were conducted with smaller grid
sizes and it was found that the results for the Nusselt
number were not affected by more than 0.5%. Results
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for a barc sphere with Pe,, = Pe; were very close to
those given by Acrivos and Goddard {12]

Nu = 0.991Pc"* 4+0.992.

Duc to round-off errors, it was necessary to cvaluate
the velocity field from the analytical solution using
double precision arithmcetic. However, the cal-
culations for the heat transfer were made using single
precision arithmetic. The finite-difference equations
were solved iteratively using an FPS-164 array pro-
CeSSOr.

DISCUSSION OF RESULTS

The flow and energy cquations indicate that there
are four parameters that govern the heat transfer from
a composite sphere. These are o, f, Pe; and Pe,,. a is
a measure of the ratio of the inner core radius to the
square root of the shell permeability, K. Similarly,
is a measure of the composite sphere outer radius. The
ratio ff/x can be taken to represent the radii ratio b/a.
It is best to think of « in terms of a fixed inner core
radius and its variation is duc to changes in the shell
permeability.

Four cases arc considered for a wide range of Peclet
numbers. They are: (i) o = 0.1, f = 0.11; (it) & = 0.1,
p=03;(i)xa=350,=55;and (ivya=5,8=15.
Cases (i) and (i) represent a shell having high per-
meability whereas cascs (iii) and (iv) arc for a low
permeability shell. Cases (i) and (iii) have a small
shell thickness whereas cases (i) and (iv) have a thick
porous shell.

Figure 2 shows the stream function contours for
the four cases cited above. For the cases of a = 0.1,
B =0.11 and 0.3, and « = 5, = 5.5, the streamlines
are very similar. Moreover, they are similar to the case
of flow past a barc sphere of radius a. For the case of
o =5, =15, the streamlines pronounced upward
shift away from the linc of symmetry clearly indicates
that the resistance to flow within the porous shell is
high and that there is a substantial decrcase in the
flow through the porous medium.

The temperature variations along 0 =0 (frontal
stagnation line) are shown for 2 = 0.1, § = 0.11 and
for x=0.1, #=0.3 in Figs. 3 and 4, respectively.
Figure 3 shows that for Pe,, = 10,000 the temperature
variation is independent of the fluid Peclet number
and that the thermal boundary layer is within the
porous shell. However, for the case of Pe,, = 100, the
temperature variation is a strong function of the fluid
Peclet number, Pe,. For the case of (Pe,, Pe;) of
(100, 1), (100,10) and (100, 1000) there is a sharp
change in the temperature profile at the edge of the
composite spherc (£ = f8). For the case of o« = 0.1 and
B = 0.3, Fig. 4 shows that the thermal boundary layer
is within the porous shell for a Pe, as low as 10.
Figures 3 and 4 suggest that in cases where the thermal
boundary layers lic within the porous medium, it is
expected that the Nussclt number, Nu,,,, becomes inde-
pendent of the fluid Peclet number, Pe,.. When the
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FiG. 3. Variation of temperatures with radial distance for
x=01,5=0.11

porous shell thickness is large, such an independence
of Pe; should then occur at a smaller value of the
porous medium Peclet number.

The variation of the average Nusselt number,
Nu,,, with the porous medium Peclet number is shown
in Figs. 5 and 6. For the cases of « = 0.1, # = 0.11 at
a porous medium Peclet number of 20,000 the average
Nusselt number, Nu,,, becomes independent of the
fluid Peclet number. Such an asymptote is reached at
a much lower value of Pe, for the case of a = 0.1,
B = 0.3 as would have been predicted from the tem-
perature profiles of Figs. 3 and 4. For both cases, at
high values of Pe,, Nusselt number variation with
Pe,, becomes coincidental with that of a bare sphere
where Pe.= Pe,,. In this regime, Nu, ~ 0.99Pe}".
Figure 6 shows the Nusselt number variation, Nu,,,
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with Pe,, for the cases of a =35, f=55and a = 3§,
B = 15. The variation of Nu,, fora = 5, f = 5.5is very
similar to that of o = 0.1, # = 0.11. This is due to the
fact that the flow field is little affected by the porous
shell which is quite thin for these two cases. For o = 5
and f = 15, Nu, becomes invariant to Pe; at a Pe,,
value of about 100 and it becomes proportional to
Pe)*. However, it falls below the bare sphere
(Pe; = Pe,,) case. This is because the velocity in the
porous medium is much less than that with the
absence of the porous shell.

In order to assess the effect of the presence of the
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F1G. 7. Variation of average Nusselt number with fluid Peclet
number for the high permeability case.

10000
=5 =55
e e =5 B=15 ~
1000 Ve
5 b e Bare Sphere yrd s
Iz e
= 2 /
- %
E Sl
]
Z -
= Wy QT S e T
@
] - g
2 z .
z Ve
,/g;iope =1
a1 .
01 1 10 100 1000 0000 100000

Fluid Peclect Number, Pe;

Fi1c. 8. Variation of average Nusselt number with fluid Peclet
number for the low permeability case.

porous shell on the heat transfer characteristics of a
composite sphere, it becomes more convenient to plot
Such plots are given by Figs. 7 and 8. For the cases
ofe=0.1,8=01lando = 0.1, f = 0.3, Fig. 7 shows
that for a given value of Pe,, enhancement in heat
transfer can be achicved as long as Pe,, < Pe,. Heat
transfer enhancement is very pronounced for the case
of «=0.1, =03, It should bc noted, that a
Pe,, < Pe; is equivalent to k,, > k. Figure 7 shows
that for a Pe; = Pe,, Nu; for the composite sphere is
very close to that of a bare spherc. This is because the
flow resistance offered by the porous shell is fairly
small at & = 0.1. For the case of § = 0.3, in the range
of high Pe,, it can be observed that In Nu, varics lin-
early with In Pe;, and In Nu, vs In Pe, exhibits a slope
of unity. This leads to

Nue = (constant) Pe,
and

2ak Cpfau!'
R t t R LS,
i {constant) Re %
with / independent of the fluid thermal conductivity.
The Nusselt number Nu, variation with Pe,is shown
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in Fig. 8. For thecase of w = 5, § = 15 with Pe; > 10,
and Pe; = Pe,, the Nu; for the composite sphere is
less than that of a bare sphere. This means that no
enhancement in heat transfer is achieved until the Pe,,
value is much less than Pe;. Here, the retardation in
the velocity field in the porous medium tends to lower
the value of Ny, until the Pe,, value is sufficiently lower
than Pe; Consequently, if a porous shell is used to
enhance heat transfer from a body, unless the porous
medium thermal conductivity is sufficiently larger
than that of the fluid, the porous shell might not offer
any enhancement in heat transfer.

For pure conduction, equation (20b) describes the
variation of Nu,, as a function of (&/8) and (Pey Pe,,).
It is of interest to evaluate the validity of equation
{(20b) for forced convection at small values of Pe, and
Pe,. Figure 9 shows the variation of Nu,, with Pe/Pe,,
as given by equation (20b) for the pure conduction
case and for the force convection from this study. For
o =5, f =15 with Pe; = 0.1 and 1.0, the variation of
the average Nusselt number, Nu,,, is fairly close to the
pure conduction case. However, as Pe, is increased
to 10, deviation from the limiting case of the pure
conduction becomes more significant. For ¢ = 0.1,
B = 0.3 the agreement with the pure conduction case
is close only for the smaller values of Pe; (and conse-
quently lower values of Pe,,). The closer agreement to
the pure conduction limit fora = S and § = 15 is due
to the fact that for this case the porous medium is not
very permeable and the velocity field is weak. This in
turn decreases the effect of the presence of the external
flow field.

It was stated earlier that buoyancy effects were
neglected. If one is to include buoyancy forces, it
becomes necessary to modify Brinkman’s equation to
account for the inertial effects that can arise from flow
within a fairly permeable porous medium. In addition,
the inertial terms that are absent in Stokes equations

must also be accounted for by using Navier-Stokes
equations.

CONCLUSIONS

The solution of the convection-diffusion equation
showed that at high values of the porous medium
Peclet number, the average Nusselt number, Nu,,
becomes independent of the fluid Peclet number. In
the region of small Pe; and Pe,, the analytical
expression for pure conduction provides a good
approximation to the average Nusselt number. The
average Nusselt number is found to be a strong func-
tion of the porous shell permeability and thickness.
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APPENDIX

The constants appearing in equations (5) and (6) are given

B= By
~ 2(xsinh f—cosha)J
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where
B, = 3(a* +2ap >+ 3a¢*) cosh a +9«*(cosh f — Bsinh §
—asinha)+3cosh A(e® +28° + 3a) (2B sinh
—ocosh f— fcosha) + 3’ Bsinha] + Isinh A[(e?
+283+ 3a)cosha + 3a(af sinh f—acosh f —sinh )]
and
J = —6a+(3a+3f+u’+28%)cosh A+3(a®—1)sinh A
with

A=f—-u
H=
3(a®+2p*) cosh a+9a(cosh « —a sinh a—cosh f+ f sinh )

J

_da—(a cosh f—sinha)H
~  asinhf—cosha

F = (Gcosha+ Hsinha)/3a

G

E=2B+26°F

D=0

C=-1

A = B>~ BB+ E+ B F+ (cosh — Bsinh §)G + (sinh §
—Bcosh f)H.

TRANSFERT DE CHALEUR PAR UNE SPHERE COMPOSITE POREUSE IMMERGEE
DANS UN ECOULEMENT

Résumé—On évalue numériquement le transfert convectif de chaleur, pour des nombres de Reynolds
faibles, par une sphére isotherme entourée d’une couche poreuse. Dans le cadre des grands nombres de
Peclet poreux, le nombre de Nusselt moyen, basé sur la conductivité thermique du milieu poreux, devient
indépendant du nombre de Peclet du fluide et il est proportionnel au nombre de Peclet du milieu poreux
éleve a la puissance un-tiers. Dans la limite des petits nombres de Peclet du fluide et du milieu poreux, le
nombre de Nusselt moyen s’approche de celui correspondant au cas limite de la conduction pure.

WARMEUBERGANG AN EINER KUGEL MIT POROSER SCHALE IN EINEM
STROMENDEN FLUID

Zusammenfassung—Es wird der konvektive Warmetibergang an einer isothermen Kugel mit pordser Schale

bei niedrigen Reynolds-Zahlen numerisch berechnet. Im Grenzfall grofer Peclet-Zahlen des porésen Stoffes

wird die mittlere Nusselt-Zahl—gebildet mit der Wiarmeleitfahigkeit des porésen Materials—von der

Peclet-Zahl des Fluids unabhéngig, sie steigt proportional zur Peclet-Zah! des pordsen Materials mit der

Potenz 1/3. Im Grenzfall kleiner Peclet-Zahlen des Fluids und mittlerer Peclet-Zahlen des porésen Stoffes
néhert sich die mittlere Nusselt-Zahl derjenigen bei reiner Wirmeleitung.

TEIUIOITEPEHOC OT ITOPUCTOM KOMITO3UTHOMN C®EPLI, ITOTPYXKEHHOU B
ABHXYIUNACH TOTOK

AnnoTanEs—YHCICHHO OlleHeH KOHBEKTHBHBIH TemnonepeHoC B 061acTH HU3KHX 4ucen Peiinosbaca or

H30TEpMHYeCKOH chepbl, OKpyXeHHOH NMOpHCTOH obGoyoukol. B npemefbHOM cinydae mis 6onpiumx

uncest [Texne cpeanee uncno Hyccenbra, koTopoe conepxHT k03hOHUKEHT TEMIONPOBOAHOCTH NIOPHC-

TOH Cpebl, CTAHOBHTCA HE3aBHCAWIAM OT 4Hcna Ilekne A KHMAKOCTH H NMPONOPUMOHATBLHBIM 3TOMY

4uCITy Ui MOPHCTOH cpednl B cTenenH 1/3. B npenene Manbix yncen IMekne aas XAOKOCTH B MOPHCTOH

cpelbl ycpenHeHHoe yncno HyccesnbTa CTpeMHTCA K 3HAY€HHIO, NOJYyUEHHOMY [l IPEAENBbHOTO Ciiydas
KOHAYKTHBHOH TEILIONPOBOXHOCTH.



