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Abstract-Convection heat transfer in the low Reynolds number regions from an isothermal sphere 
surrounded by a porous she11 is numerically evaluated. In the limit of large porous medium Peclet numbers, 
the average Nusselt number based on the porous medium thermal conductivity becomes independent of 
the fluid Peclet number and becomes proportional to the porous medium Peclet number raised to the 
power one-third. In the limit of small fluid and porous medium Peclet numbers, the average Nusselt number 

approaches that given by the limiting case of pure conduction. 

INTRODUCTION 

MIXED convection heat transfer from bodies embed- 

ded in a porous medium and for bodies immersed in 

a free moving stream have been studied quite exten- 
sively [ 1,2]. However, there is a small body of litera- 
ture that deals with fluid flow and convective heat 
transfer for porous bodies immersed in a free moving 
stream. Fluid flow past a porous sphere has been 
studied by Brinkman [3], Ooms et al. [4], Neale et al. 
[S], Nandakumar and Masliyah [6] and that for a 
porous cylinder by Shi and Braden [7]. Convective 
heat transfer in the low Reynolds number regime has 
been reported by Ramilison and Gebhart [8]. No simi- 
lar analysis is available for a porous sphere or other 
geometries. 

In this study, the convective heat transfer in creep- 
ing flow will be examined for the case of an isolated 
composite sphere. Such a sphere comprises of a solid 
impermeable isothermal core surrounded by a shell 
of homogeneous and isotropic porous medium. The 
porous shell can represent either a medium having a 
low thermal conductivity that acts as an insulator or 
a medium having a high thermal conductivity which 
has the potential of enhancing heat transfer. The 
effects of the porous shell permeability, its thickness 
and its thermal conductivity will be studied. It should 
be recognized, that at low Reynolds numbers, natural 
convection is normally not insignificant especially for 
low Peclet numbers. In this study, the natural con- 
vection will be neglected and consequently this study 
deals with pure forced convection only. The limiting 
cases of low and high Peclet numbers for forced con- 
vection flow will be presented. 

FORMULATION 

The physical problem under study is shown in Fig. 
1. The isolated composite sphere has an outer radius 
b and an inner solid isothermal spherical core of radius 

a. The inner core is surrounded by a shell of homo- 
geneous and isotropic porous material of permeability 
K. The case of axisymmetric creeping flow of a New- 
tonian fluid having constant physical properties will 
be considered. The viscous dissipation, pressure, 
energy and buoyancy terms are neglected. 

Within the unobstructed fluid outside the com- 

posite sphere, the Stokes and continuity equations 

describe the prevailing flow field and they are given 

by 

and 

pfV2u=Vp, b<r<co (1) 

v-11=0, b<r<oo (2) 

where II = [u,, ZQ, u+] denotes the fluid velocity vector, 
and p is the fluid pressure. The corresponding equa- 
tions describing the flow field within the permeable 
shell region are given by Brinkman’s and continuity 
equations 

- If;u*+/$?u* = vp*, adrdb (3) 

and 

V*u*=O, a<r<b (4) 

where * denotes a macroscopically averaged quantity 
pertaining specifically to the porous medium region. 
The Brinkman equation was used in preference to the 
Darcy equation in order to accommodate the bound- 
ary conditions between the free fluid and the porous 
medium. Full discussions on the merits of the Brink- 
man equation can be found in Brinkman [3], Ooms et 
al. [4] and Koplik et al. [9]. 

The boundary conditions for equations (l)-(4) are 
those of no slip at the inner core, uniform flow at a 
distance far away from the sphere and continuity of 
velocities, normal and tangential stresses at the inter- 
face between the free surface and the fluid, r = b. The 
solution of flow equations (l)-(4) is given by Masliyah 
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NOMENCLATURE 

; 
inner core (sphere) radius u, dimensionless radial velocity, u,/U, 

composite sphere outer radius u, dimensionless angular velocity, u,/U, 

C,F fluid specific heat U, free stream approach velocity. 

h local heat transfer coefficient 

kr fluid thermal conductivity Greek symbols 

k, effective thermal conductivity of porous 
medium ; 

dimensionless solid sphere radius, a/JK 
dimensionless outer shell radius, b/,/K 

K porous medium permeability 0 angular coordinate 

Nur local Nusselt number based on kf /Jr fluid viscosity 

N% local Nusselt number based on k, 5 dimensionless radial coordinate, r/JK 

P pressure Pf fluid density 

Per fluid Peclet number, 

; 

dimensionless temperature 

(2aIJ&~r)(C,,Wkr) stream function. 

Pe, effective porous medium Peclet number, 

(2a~~prl~r)(C,,&M Subscripts 

r radial coordinate f fluid 

T temperature m porous medium 

TW wall temperature r radial direction 

T, fluid temperature far away from the e angular direction. 

sphere 
II velocity vector Superscripts 

a, radial velocity * pertaining to porous medium 

43 angular velocity - average quantity. 

-l-H 
sinh 5 
p-coshr 

5 >I sin2 0, tl < r < /l (6) 

<=r/,/K, u=a/JK and /I= b/JK. 

The stream functions are related to the velocities by 

-1 a+ 

l4 =r2sin r (7) 

approaching fluid 

Similarly UT and uz are related to $*. The constants 
in equations (5) and (6) are given in the appendix. 

The energy equation for the free fluid and porous 

FIG. I. Coordinate system for axisymmetric flow relative to medium are given by 
an isolated composite sphere. 

et al. [lo] in terms of stream functions as 
and 

[A/5 + B5 + Cg 2 + 05 “1 sin2 0, 
PG, 

aT* MO* aT* 
u*---+-- 

’ dr rae > 
=k V27-* 

m . (10) 

B G 5 < cfl (5) 

,*=_F 

Introducing the dimensionless quantities 

E/<+F<‘+G 
cash 5 
__ 

5 
- sinh 5 

> 5 = rIJK U, = 4 U, , UO = USI Urn 
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cp* 
T*-T, ~aUl&C,, 

=m 
Pem=- k 

m 

and 

Per = 
ZQUmPfqf 

k, ’ 

The energy equations become 

(11) 

1 a 
+ .-in-j ;ie 

a4 ( 11 sin 0 as (12) 

and 

The boundary conditions are 

r=a, g--u, (p* = 1 forall (14a) 

I = b, r = /I, Q, = c$* for ail B (14b) 

(1~) 

r-+c.o, <-*co, t$=O forall@ (14d) 

13 = 0 and n, for all 5. (14e) 

The velocity fields are provided from the analytical 
solution. Equations (12) and (13) were numerically 
solved using a control volume approach [ 111. 

The heat transfer coefficient is given by 

Introducing dimensionless quantities equation (15) 
becomes 

Two types of Nusselt numbers can be defined, one 
based on kf and another based on k,, i.e. 

and 

Nu, = gt 
m 

Making use of equation (16), one can obtain the local 
Nusselt numbers 

and 

The average Nusselt number is given by 

z=; 
II 

s 
NU sin Qd0. 

0 
(19) 

In the limiting case of pure conduction, the diffusion 
equations can be simultaneously solved for composite 
spherical shells using the boundary conditions of 
equations (14a)-( 14d). The average Nusselt number 
for pure conduction is then given by 

--- 2 

Num = 1-t (k,,Jk,-- ~)(cY#) (2Oa) 

Putting km/kc = Pef/Pem equation (2Oa) becomes 

YGm = 
2 

1 + (Pet-/P& - l)(a//?) (2Obl 

where 

(48) -c 1. 

Here km refers to the spherical shell bounded by 
a < r =Z fl and krrefers to the spherical shell c >, & In 
the limit of Per = Pe,, the average Nusselt number 
becomes 2 which is the accepted Nusselt number for 
a sphere in pure conduction. 

NUMERICAL PROCEDURE 

Initially, the convective problem was formulated 
using central difference formulation. However, it was 
abandoned due to convergence problems at high 
transport numbers. The problem was reformulated 
using the control volume approach as described by 
Patankar [f. 11. In the porous region, the grid size was 
uniform. The number of grids in the radial direction 
was varied from 11 to 151 depending on the values of 
a and fi. The highest number of grids was used for the 
case of CI = 0.1, fl = 0.3 at Pe, > 1000. In the free 
fluid zone, the grid size was varied as 

(A<)j+l = 1.12’“-‘“(At) i 

where (AQi is the grid size at the ith radial node with 
i = 1 when t = /3. 

The number of grids in the free fluid region was 
varied to ensure that the fluid temperature at the 
downstream region (@ = a) decayed to zero mono- 
tonically. The grid size in the angular region was 
taken as $20. Tests were conducted with smaller grid 
sizes and it was found that the results for the Nusselt 
number were not affected by more than 0.5%. Results 
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for a bare sphere with PC, = Per were very close to 
those given by Acrivos and Goddard [12] 

40 

/VU = 0.9’) 1 PC” ’ +0.992. 

cY=O.l - - 
p=o.11 e;OS 

-0_2,,, 
-Cl.01- 

Due to round-off errors. it was necessary to evaluate 
the velocity held from the analytical solution using 
double precision arithmetic. However, the cal- 
culations for the heat transfer were made using single 
precision arithmetic. The finite-difference equations 
were solved iteratively using an FPS-164 array pro- 
cessor. 

DISCUSSION OF RESULTS 40 

The flow and energy equations indicate that there 
are four parameters that govern the heat transfer from 
a composite sphcrc. These are c(, /I, Pe, and Pe,. c1 is 
a measure of the ratio of the inner core radius to the 
square root of the shell permeability, K. Similarly, /3 
is a measure of the composite sphere outer radius. The 
ratio /I/z can be taken to represent the radii ratio b/a. 
It is best to think of a in terms of a fixed inner core 
radius and its variation is due to changes in the shell 
pcrmcability. 

a=5 
p=5.5 

Four cases arc considcrcd for a wide range of Peclet 
numbers. They are : (i) a = 0. I, /I = 0. I 1 ; (ii) CI = 0. I, 
/j = 0.3 ; (iii) a = 5.0, /I = 5.5 ; and (iv) a = 5, fi = IS. 
Cases (i) and (ii) represent a shell having high per- 
mcability whereas casts (iii) and (iv) are for a low 
pcrmcability shell. Casts (i) and (iii) have a small 
shell thickness whereas cases (ii) and (iv) have a thick 

porous shell. 

FIG. 2. Streamline contours. 

Figure 2 shows the stream function contours for 
the four casts cited above. For the cases of CL = 0.1, 
[I = 0. I I and 0.3. and CI = 5, /j = 5.5, the streamlines 
are very similar. Moreover, they are similar to the case 

of flow past a bare sphere of radius u. For the case of 
c( = 5. /j = 15, the streamlines pronounced upward 
shift away from the lint of symmetry clearly indicates 
that the resistance to flow within the porous shell is 
high and that there is a substantial decrease in the 
flow through the porous medium. 

\ 
2 j 

\ 

Line Pe, Pet 

1 loo low 

2 100 1w 

3 100 10 

4 100 1 

\3 j 5 lcom O.l-loow 

7.0 1.1 1.2 1.3 14 1.5 

Radial Distance, r/a 

The tcmperaturc variations along 0 = 0 (frontal 
stagnation line) are shown for 2 = 0.1, /j = 0.1 I and 
for z = 0.1, /j = 0.3 in Figs. 3 and 4, respectively. 
Figure 3 shows that for PC>,,, = 10,000 the temperature 
variation is independent of the fluid Peclet number 
and that the thermal boundary layer is within the 

porous shell. Howcvcr. for the case of Pe,, = 100, the 
tcmpcraturc variation is a strong function of the fluid 
Pcclet number, PC,,. For the case of (Pe,,,, Per) of 
(100, I), (100. IO) and (100, 1000) there is a sharp 
change in the tcmpcraturc profile at the edge of the 
composite sphere (5 = p). For the case of CL = 0.1 and 
[j = 0.3. Fig. 4 shows that the thermal boundary layer 
is within the porous shell for a Pe, as low as IO. 
Figures 3 and 4 suggest that in cases where the thermal 
boundary layers lit within the porous medium, it is 
expcctcd that the Nussclt number, NM,,, becomes inde- 
pcndcnt of the fluid Pcclet number, Pe,. When the 

FIG. 3. Variation of temperatures with radial distance for 
a=0.1,~=0.11. 

porous shell thickness is large, such an independence 
of Pe, should then occur at a smaller value of the 
porous medium Peclet number. 

The variation of the average Nusselt number, 
Nu,, with the porous medium Peclet number is shown 
in Figs. 5 and 6. For the cases of c( = 0.1, fi = 0.1 I at 
a porous medium Peclet number of 20,000 the average 
Nusselt number, Nu,,,, becomes independent of the 
fluid Peclet number. Such an asymptote is reached at 
a much lower value of Pe,, for the case of c( = 0.1, 
/I = 0.3 as would have been predicted from the tem- 
perature profiles of Figs. 3 and 4. For both cases, at 
high values of Pe,, Nusselt number variation with 
Pe, becomes coincidental with that of a bare sphere 
where Pe, = Pe,. In this regime, Nu, N 0.99Pez3. 

Figure 6 shows the Nusselt number variation, Nu,, 
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FIG. 4. Variation of temperatures with radial distance for FIG. 7. Variation ofaverage Nusselt number with kid Pcclet 
!x = 0.1, fi = 0.3. number for the high p~~lne~bili~y case. 

--------Bare sphere 

“.. 

0.1 1 10 loo lam lwoc loo033 

Porous Medium Peclect Number, Pen, 
FIG. 5. Variation of average Nusselt number with porous 

medium Peclet number for the high permeabi)~ty case. 

0.1 1 10 WI loo0 lo300 lMxa0 

Porous Medium Peclect Number, Pe, 

FIG. 6. Variation of average Nusselt number with porous 
medium P&et number for the low permeability case. 

with Pe, for the cases of fc = 5, p = 5.5 and CK = 5, 
8 = 1.5. The variation of Nu, for R = 5, p = 5.5 is very 
similar to that of a = 0.1, fi = 0.11. This is due to the 
fact that the flow field is little affected by the porous 
shell which is quite thin for these two cases. For CL = 5 
and fi = 15, ?&& becomes invariant to Pe, at a PC, 
value of about 100 and it becomes proportional to 
pe$“. However, it falls below the bare sphere 
(Pe, = Pem) case. This is because the velocity in the 
porous medium is much less than that with the 
absence of the porous shell. 

In order to assess the effect of the presence of the 

----a-o1 &O.ll 

- - (Y=O.l !.+0.3 

--------Bare Sphere 

Fluid Peclect Number, Pet 

1 10 ilx Iwo lc@a IWMW) 

Fluid Peclect Number, Per 

FIG. 8. Variation ofaverage Nusselt number with fluid peck1 
number for the low p~rnleability case. 

porous shell on the heat transfer cha~~~terist~~s of a 
composite sphere, it becomes more convenient to plot 
the variation of %G, with the lluid Pcclct number, Pep 
Such plots are given by Figs. 7 and 8. For the cases 
ofcr=0.1,~=0.llanda==0.1,~~=0.3,Fig.7shows 
that for a given value of Pf>,; enhan~ment in heat 
transfer can be achieved as long as PC, < PC’,.. Heat 
transfer enhan~en~ent is very pronounced for the case 
of E = 0.1, b = 0.3. lt should be noted, that a 
Fe, < Per is equivalent to k,, r k,.. Figure 7 shows 
that for a &,. = Pe,, A$. for the composite sphere is 
very close to that of a bare sphcrc. This is because the 
flow resistance offered by the porous shell is fairly 
small at IL = 0.1, For the case of fi = 0.3. in the range 
of high Per, it can be observed that In Nu, varies lin- 
early with In Pe,., and In Nu, vs In Pe, exhibits a slope 
of unity. This leads to 

and 
Nur = (constant) Pp, 

2ah c&k 

kr 
- = (constant) &-X1 .. 

F 

with h independent of the fluid thermal Cond~Ictivity, 
The Nusselt number Nu, variation with Pe, is shown 
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----Pure Conduction Case 

- - - cr=O.l p=o.3 
.---- _ __-_-. &+j p=,s 

FIG. 9. Comparison with limiting case of pure conduction. 

in Fig. 8. For the case of a = 5, j? = 1.5 with Per 2 IO, 
and Pef = Fe,, the &%, for the composite sphere is 
less than that of a bare sphere. This means that no 
enhancement in heat transfer is achieved until the Pe, 
value is much less than Per, Here, the retardation in 
the velocity field in the porous medium tends to lower - 
the value of ~~~u~til the Pe, value is su~~iently lower 
than Pep Consequently, if a porous shell is used to 
enhance heat transfer from a body, unless the porous 
medium thermal conductivity is sufficiently larger 
than that of the fluid, the porous shell might not offer 
any enhancement in heat transfer. 

For pure conduction, equation (20b) describes the - 
variation of Nu, as a function of (LX/~) and (PedPe,). 

It is of interest to evaluate the validity of equation 
(20b) for forced convection at small values of Pe, and ~ 
Pep Figure 9 shows the variation of Nu, with PedPe, 
as given by equation (20b) for the pure conduction 
ease and for the force convection from this study. For 
a = 5, fl = 15 with Per = 0.1 and 1 .O, the variation of 
the average Nusselt number, Km, is fairly close to the 
pure conduction case. However, as Pet is increased 
to 10, deviation from the limiting case of the pure 
conduction becomes more significant. For ce = 0. I, 
j_? = 0.3 the agreement with the pure conduction case 
is close only for the smaller values of Fe, (and conse- 
quently lower values of Pe,,). The closer agreement to 
the pure conduction limit for CI = 5 and 8 = 15 is due 
to the fact that for this case the porous medium is not 
very permeable and the velocity field is weak. This in 
turn decreases the effect of the presence of the external 
fiow field. 

It was stated earlier that buoyancy effects were 
neglected. If one is to include buoyancy forces, it 
becomes necessary to modify Brinkman’s equation to 
account for the inertial effects that can arise from flow 
within a fairly permeable porous medium. In addition, 
the inertial terms that are absent in Stokes equations 

must also be accounted for by using Navier-Stokes 
equations. 

CONCLUSIONS 

The solution of the ~onvection~iffusion equation 
showed that at high values of the porous medium 
Peclet number, the average Nusselt number, Nu,, 
becomes independent of the fluid Peclet number. In 
the region of small Per and Pe,, the analytical 
expression for pure conduction provides a goad 
approximation to the average Nusselt number. The 
average Nusselt number is found to be a strong func- 
tion of the porous shell permeability and thickness. 
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APPENDIX 

G = 3a - (a cash B - sinh a)H 

a sinh B - cash a 

F = (G cash a + H sinh c()/3a 

E = 2B+2b’F 
_ _ 

lJ=u 
The constants appearing in equations (5) and (6) are given 

as C=-1 

A = B’-j*B+E+/J’F+(coshP-Psinhfi)G+(sinh/I 
B= 

&l 
2(a sinh b-cash a)J -flcoshB)H. 

TRANSFERT DE CHALEUR PAR UNE SPHERE COMPOSITE POREUSE IMMERGEE 
DANS UN ECOULEMENT 

Rbum&-On Cvalue numtriquement le transfert convectif de chaleur, pour des nombres de Reynolds 
faibles, par une sphere isotherme entour&e dune couche poreuse. Dans le cadre des grands nombres de 
Peclet poreux, le nombre de Nusselt moyen, base sur la conductivite thermique du milieu poreux, devient 
independant du nombre de Peclet du fluide et il est proportionnel au nombre de Peclet du milieu poreux 
tleve a la puissance “n-tiers. Dans la limite des petits nombres de Peclet du fluide et du milieu poreux, le 

nombre de Nusselt moyen s’approche de celui correspondant au cas limite de la conduction pure. 

WARMEUBERGANG AN EINER KUGEL MIT PORdSER SCHALE INEINEM 
STRGMENDEN FLUID 

Zusammenfassung-Es wird der konvektive Warmetibergang an einer isothermen Kugel mit porijser Schale 
bei niedrigen Reynolds-Zahlen numerisch berechnet. Im Grenzfall groBer Peclet-Zahlen des porijsen Stoffes 
wird die mittlere Nusselt-Zahl-gebildet mit der Wlrmeleitfahigkeit des porosen Materials-von der 
Peclet-Zahl des Fluids unabhangig, sie steigt proportional zur Peclet-Zahl des poriisen Materials mit der 
Potenz l/3. Im Grenzfall kleiner Peclet-Zahlen des Fluids und mittlerer Peclet-Zahlen des pordsen Stoffes 

nlhert sich die mittlere Nusselt-Zahl dejenigen bei reiner Wlrmeleitung. 

TEl-I.JIOIIEPEHOC OT IIOPHCTOH KOMI-I03HTHO$i CQEPbI, HOI-PYXEHHOH B 
ABHXYIIIHfiCX I-IOTOK 

AirfioTaqn~%rCJteHHo OneHeH ICOHEZKTHBH~I~~ TennonepeHoc B o6AacTH HH~KHX -men PefiHonbAca of 

H3OTepMHWCRO~ C@pbI, OKpyXCeHHOii IlOpHCTOfi o6ono~~ok. B IlpeAeAbHOM CAyYae AJM 6OnbmHX 

WiCeJl neKJle CpeAHee YHCJIO HyccenbTa, KOTOpOe COAe&XXHT KO3(j@HlIJieHT Tel,,,OnpOBOAHOCTE, "OpHC- 
TOfi CpeAbI, CTaHOBHTCR He3aBHCIIllWM OT qHCAa neK,Ie AAX -KOCTH H ,,pO,,Op~OHa,IbHbW, 3TOMy 
Yncny nnn nop~crofi cpenar B crenerm l/3. B npenene ~anbtx qricen netC.Jte anr W~AKOCTH w nop~crok 

CpeAbl yCpeAHeHHOe YHCJlO HyCUYIbTa CTpeMiTCff K 3Ha~eHHlO,lIOJlyYeHHOMy AJlK IIpeAeJlbHOr0 CAygar 

KOHAYgTHBHOiiTelIJlO~pOBOAHOCTH. 


